## 4 Caracterização do Solo e do Licor Cáustico

## 4.1. Introdução

Procurando representar o mais fielmente possível o fenômeno acontecido, tanto o solo como o licor cáustico, utilizados nesta pesquisa provêm do local onde aconteceram os recalques.

O solo foi extraído a uma profundidade de dois metros, em locais da fábrica denominados Cava Sul e Cava Norte, e foi enviado em forma de blocos cúbicos indeformados de aproximadamente 30 cm de aresta. O licor, que é uma mistura de hidróxido de sódio, alumínio e ferro, foi enviado e armazenado em um tonel plástico de aproximadamente 30 litros. No fundo do tonel, apresentava-se um volume decantado de uma substância branca que, inicialmente acreditou-se ser alumina pura. Este material é identificado como *resíduo*.

Neste capítulo, serão apresentados os resultados da caracterização físicoquímica do licor e do solo, e a caracterização geotécnica e mineralógica do solo. Os procedimentos de ensaio utilizados estão descritos no Anexo 1.

# 4.2. Características físico-químicas do licor cáustico

Para caracterizar o licor, foram executados ensaios de teor alcalino, pH, condutividade elétrica assim como determinados a densidade total e os conteúdos de ferro e alumínio total para as concentrações utilizadas nos ensaios edométricos.

Com a finalidade de escolher as concentrações a serem utilizadas nos ensaios edométricos, preparam-se soluções de licor cáustico e água destilada em volume de 0 a 100 % de licor, crescendo de 10 em 10 %. Nestas soluções, foram determinados inicialmente os valores de pH, teor alcalino e condutividade elétrica.

O pH foi medido com auxilio de um aparelho da WTW, com eletrodo Senlix 41. Concomitantemente, foi medida a condutividade elétrica utilizando o mesmo

aparelho com uma sonda Probe TetraCon 325. Tanto o eletrodo, como a Sonda estavam providas de sensor de temperatura.

O teor alcalino das soluções foi avaliado através da titulação com uma solução de ácido sulfúrico 0.1 N.

Para avaliar a densidade das soluções utilizou-se o método do picnômetro, tradicionalmente empregado para determinar a densidade relativa de grãos em solos.

A determinação dos conteúdos de alumínio e ferro totais foi executada mediante digestão ácida das amostras, de acordo com o procedimento EPA-Method 3010<sup>A</sup> - "Acid Digestion of Aqueous Samples and extracts for total metals for Analysis by FLAA or ICP Spectroscopy".

Os resultados destas avaliações estão resumidos e apresentados nas Tabelas 4.1, 4.2 e 4.3, e nas figuras 4.1, 4.2 e 4.3. As concentrações citadas como  $C_1$ ,  $C_2$  e  $C_3$  correspondem às utilizadas nos ensaios edométricos  $C_1$ ,  $C_2$  e  $C_3$  (ver tabela 3.1), respectivamente. Assim, a concentração  $C_1$  corresponde a um teor alcalino de 20 g/l, enquanto que as concentrações  $C_2$  e  $C_3$  correspondem a teores alcalinos de cerca de 70 g/l e 10 g/l.

Tabela 4.1– Resumo das analises nas soluções de licor.

|         |              |              | CE           |              |       |             |
|---------|--------------|--------------|--------------|--------------|-------|-------------|
| Amostra | Alcalinidade | Alcalinidade | Alcalinidade | Alcalinidade | рН    | (ms/cm)     |
|         | de           | de           | de           |              |       | (1113/0111) |
|         | Hidróxidos   | Carbonatos   | Bicarbonatos | Total        |       |             |
| 10 % L  | 12,336       | 3,648        | 0,000        | 15,984       | 12,56 | 52,9        |
| 20 % L  | 29,376       | 7,584        | 0,000        | 36,960       | 12,75 | 99,9        |
| 30 % L  | 43,056       | 9,120        | 0,000        | 52,176       | 12,84 | 131,2       |
| 40 % L  | 57,481       | 14,570       | 0,000        | 72,051       | 12,83 | 174,2       |
| 50 % L  | 73,132       | 17,296       | 0,000        | 90,428       | 12,83 | 203,0       |
| 60 % L  | 92,966       | 22,654       | 0,000        | 115,620      | 12,94 | 229,0       |
| 70 % L  | 102,084      | 23,218       | 0,000        | 125,302      | 12,92 | 250,0       |
| 80 % L  | 104,400      | 24,000       | 0,000        | 128,400      | 12,88 | 266,0       |
| 90 % L  | 107,008      | 24,984       | 0,000        | 131,992      | 12,91 | 280,0       |
| 100 % L | 128,064      | 25,920       | 0,000        | 153,984      | 12,91 | 291,0       |

| Tabela 4.2 – Propriedades |  |  |
|---------------------------|--|--|
|                           |  |  |
|                           |  |  |
|                           |  |  |

| Amostra        | ъЦ    | CE      | Teor. Alc. | Alumínio | Ferro |
|----------------|-------|---------|------------|----------|-------|
| Amostia        | рН    | (ms/cm) | (g/l)      | (ppm)    | (ppm) |
| Licor Puro     | 12,91 | 291,00  | 153,98     | 68705,90 | 3,90  |
| C <sub>1</sub> | 12,52 | 72,20   | 20,00      | 2509,80  | 2,40  |
| C <sub>2</sub> | 12,91 | 170,20  | 70,00      | 3461,80  | 3,00  |
| C <sub>3</sub> | 12,50 | 38,58   | 10,00      | 2197,10  | 2,40  |
| Resíduo        | 12,40 | 42,20   | 72,29      | 62,790   | 0,21  |

Tabela 4.3 - Densidade dos licores cáusticos utilizados nos ensaios edométricos.

| A              | Densidade Total p    | Teor Alcalino |
|----------------|----------------------|---------------|
| Amostra        | (g/cm <sup>3</sup> ) | (g/l)         |
| C <sub>1</sub> | 1,027 <sup>(*)</sup> | 20            |
| C <sub>2</sub> | 1,064 <sup>(*)</sup> | 70            |
| C <sub>3</sub> | 1,010 <sup>(*)</sup> | 10            |

(\*) medição feita a 20 °C.

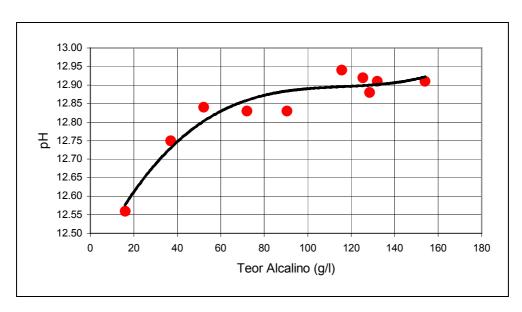



Figura 4.1 – Variação do pH dos licores cáusticos com o teor alcalino

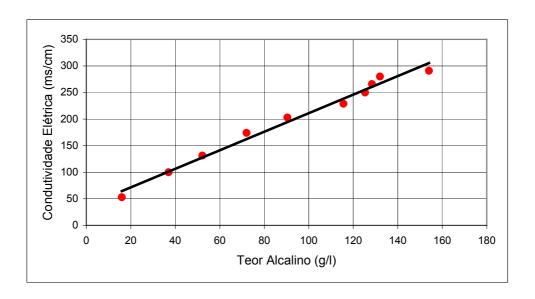



Figura 4.2 – Variação da Condutividade Elétrica dos licores cáusticos com o teor alcalino.

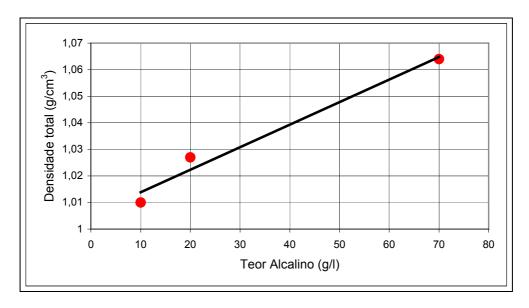



Figura 4.3 – Variação da Densidade dos licores cáusticos com o teor alcalino.

# 4.3. Ensaios de Caracterização do solo

Os ensaios de caracterização compreenderam: (a) ensaios de caracterização física: ensaios de granulometria e sedimentação convencionais, sedimentação em água, sedimentação utilizando os licores nas concentrações C<sub>1</sub>, C<sub>2</sub> e C<sub>3</sub> como defloculante; densidade dos grãos (Gs), e limites de consistência; (b) caracterização mineralógica: difração de Raios-X e lâminas petrográficas; e (c) caracterização físico-química: determinação de pH,

condutividade elétrica, capacidade de troca catiônica, superfície especifica e conteúdos de ferro e alumínio totais.

Como já foi indicado no inicio do capítulo, o solo utilizado provém de locais denominados Cava Sul e Cava Norte. Para facilitar a interpretação dos resultados apresentados, adotou-se a seguinte identificação:

|                | 3          |       |               |
|----------------|------------|-------|---------------|
| Ensaio         | Local de   | Bloco | Identificação |
| Edométrico No. | Extração   | Бюсо  | lacitimoação  |
| C <sub>1</sub> | Cava Sul   | 3     | E1-CS3        |
| C <sub>2</sub> | Cava Norte | 3     | E2-CN3        |
| C <sub>3</sub> | Cava Norte | 2     | E3-CN2        |

Tabela 4.4 – Identificação dos solos ensaiados

# 4.3.1. Caracterização física

As rotinas utilizadas na execução destes ensaios correspondem ao estabelecido pelas Normas da ABNT.

#### • Ensaio de Granulometria

Dado que o solo analisado é formado por frações grossas e finas, fizeramse ensaios de granulometria conjunta, tanto nos materiais sem contaminar como nos materiais contaminados (após o ensaio edométrico).

No caso dos materiais contaminados, além do ensaio de sedimentação convencional com hexametafosfato de sódio como defloculante, fizeram-se ensaios de sedimentação sem defloculante, utilizando só água. Isto foi feito com o intuito de verificar a existência de alguma reação química entre o licor cáustico e o hexametafosfato de sódio, que pudesse levar a resultados errôneos no ensaio de sedimentação.

Também a fim de estudar o efeito do licor cáustico na dispersão das partículas de solo, realizaram-se ensaios adicionais, utilizando o licor nas concentrações C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub> e puro, como defloculante. Para isto, colocou-se 50 gramas de solo passante na peneira # 40 (solo E2-CN3) em 125 ml de solução cáustica nas concentrações antes mencionadas, e deixou-se em repouso por um período de aproximadamente 24 horas. Em seguida, procedeu-se à dispersão

mecânica, e colocou-se a mistura em uma proveta de 1000 ml cujo volume foi completado com água destilada.

A Figura 4.4 apresenta as curvas granulométricas dos materiais sem contaminar e, na Tabela 4.5 tem-se um resumo das granulometrias destes materiais.

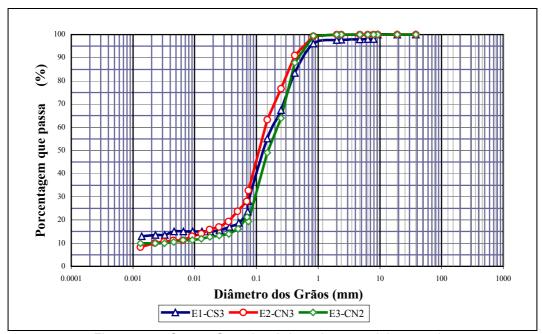



Figura 4.4 – Curvas Granulométricas dos materiais naturais.

Tabela 4.5 - Resumo da granulometria dos materiais naturais

| Material |        | Are   | eia  | Finos |       |        |       |  |
|----------|--------|-------|------|-------|-------|--------|-------|--|
| Waterial | Grossa | Media | Fina | Total | Silte | Argila | Total |  |
| E1-CS3   | 9      | 28    | 40   | 77    | 8     | 13     | 21    |  |
| E2-CN3   | 5      | 25    | 44   | 74    | 16    | 10     | 26    |  |
| E3-CN2   | 7      | 36    | 39   | 82    | 9     | 10     | 19    |  |

Na figura 4.5 e na tabela 4.6 são apresentados os resultados de granulometria do ensaio 1, ou seja depois da percolação do licor na concentração  $C_1$ . Nos casos em que corresponde, estão diferenciados os ensaios com defloculante (D) e com água (A)

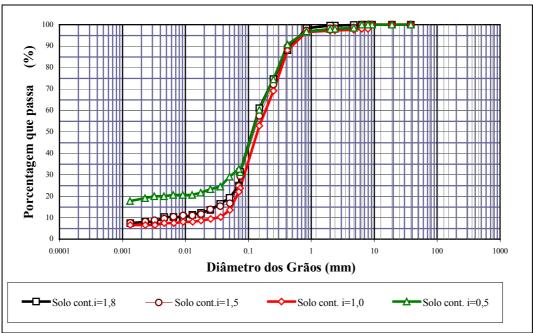



Figura 4.5 – Curvas Granulométricas Ensaio C<sub>1</sub>

Tabela 4.6 - Resumo da Granulometria - Ensaio C<sub>1</sub>

| Gradiente              |     | Areia |    |     |    |    |    |     | Finos |     |     |      |    |     |  |
|------------------------|-----|-------|----|-----|----|----|----|-----|-------|-----|-----|------|----|-----|--|
| Hidráulico (*)         | Gro | ssa   | Ме | dia | Fi | na | То | tal | Si    | lte | Arg | gila | То | tal |  |
|                        | D   | Α     | D  | Α   | D  | Α  | D  | Α   | D     | Α   | D   | Α    | D  | Α   |  |
| i = 1,8 <sup>(*)</sup> | 7   | -     | 25 | -   | 46 | -  | 78 | -   | 14    | -   | 8   | -    | 22 | 1   |  |
| i = 1,5 <sup>(*)</sup> | 5   | -     | 28 | -   | 44 | -  | 77 | -   | 12    | -   | 8   | -    | 20 | 1   |  |
| $i = 1,0^{(*)}$        | 5   | -     | 31 | -   | 44 | -  | 80 | -   | 11    | -   | 7   | -    | 18 | -   |  |
| $i = 0.5^{(*)}$        | 5   | 5     | 26 | 24  | 39 | 44 | 70 | 73  | 12    | 10  | 16  | 16   | 28 | 26  |  |

<sup>(\*)</sup> gradiente hidráulico usado no ensaio edométrico.

Nas figuras 4.5 e 4.6, e nas tabelas 4.7 e 4.8 se apresentam os resultados para os ensaios  $C_2$  e  $C_3$ .

Tabela 4.7– Resumo de Granulometria – Ensaio C<sub>2</sub>

| Gradiente      |     | Areia |    |     |    |    |    |      |    | Finos |    |      |    |      |  |
|----------------|-----|-------|----|-----|----|----|----|------|----|-------|----|------|----|------|--|
| Hidráulico (*) | Gro | ssa   | Ме | dia | Fi | na | To | otal | S  | ilte  | Ar | gila | To | otal |  |
|                | D   | Α     | D  | Α   | D  | Α  | D  | Α    | D  | Α     | D  | Α    | D  | Α    |  |
| i = 4,0        | 4   | 4     | 24 | 24  | 42 | 41 | 70 | 69   | 11 | 13    | 18 | 18   | 29 | 31   |  |
| i = 2,0        | 4   | 4     | 25 | 24  | 40 | 38 | 69 | 66   | 10 | 14    | 20 | 19   | 30 | 33   |  |
| i = 1,0        | 4   | 4     | 25 | 26  | 41 | 38 | 70 | 68   | 12 | 13    | 19 | 19   | 31 | 32   |  |

<sup>(\*)</sup> gradiente hidráulico usado no ensaio edométrico.

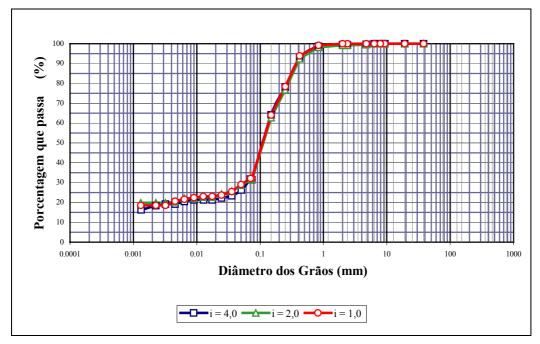



Figura 4.6 – Curvas Granulométricas – Ensaio C<sub>2</sub>

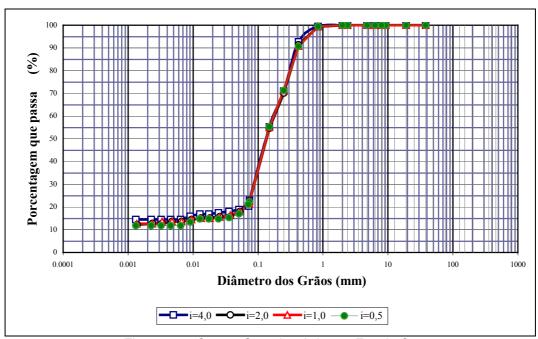



Figura 4.7 - Curvas Granulométricas – Ensaio C<sub>3</sub>

Tabela 4.8 - Resumo de Granulometria — Ensaio  $C_3$ 

| Gradiente  |    | Areia |    |     |    |    |    |     | Finos |     |     |      |    |     |
|------------|----|-------|----|-----|----|----|----|-----|-------|-----|-----|------|----|-----|
| Hidráulico | Gr | ossa  | Ме | dia | Fi | na | То | tal | Si    | lte | Arg | gila | То | tal |
|            | D  | Α     | D  | Α   | D  | Α  | D  | Α   | D     | Α   | D   | Α    | D  | Α   |
| i = 4,0    | 4  | 5     | 32 | 31  | 44 | 44 | 81 | 80  | 5     | 6   | 14  | 14   | 19 | 20  |
| i = 2,0    | 5  | 5     | 32 | 31  | 43 | 44 | 80 | 80  | 7     | 6   | 13  | 14   | 20 | 20  |
| i = 1,0    | 5  | 5     | 31 | 31  | 44 | 42 | 80 | 78  | 6     | 7   | 13  | 14   | 20 | 21  |
| i = 0,5    | 6  | 6     | 31 | 30  | 44 | 44 | 81 | 80  | 6     | 7   | 14  | 12   | 20 | 19  |

Na tabela 4.9 e na figura 4.8 se apresentam os resultados para os ensaios Tipo 3.

Tabela 4.9 – Resumo de Granulometria – Ensaio Tipo 3

| Material               |        | A     | reia  | Finos |       |        |       |
|------------------------|--------|-------|-------|-------|-------|--------|-------|
| Waterial               | Grossa | Media | Fina  | Total | Silte | Argila | Total |
| NC                     | 0,00   | 0,00  | 14.72 | 14,72 | 34,17 | 51,11  | 85,28 |
| C <sub>1</sub> =20 g/l | 0,00   | 0,00  | 16,54 | 16,54 | 44,62 | 38,84  | 83,46 |
| C <sub>2</sub> =70 g/l | 0,00   | 0,00  | 19,32 | 19,32 | 41,98 | 38,70  | 80,68 |
| C <sub>3</sub> =10g/l  | 0,00   | 0,00  | 14,69 | 14,69 | 33,51 | 51,80  | 85,31 |

NC=amostra não contaminada, C1, 2 e 3, concentrações cáusticas utilizadas no ensaio edométrico.

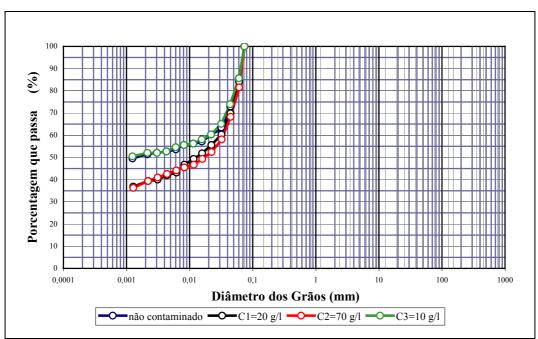



Figura 4.8 – Curvas Granulométricas – Ensaio Tipo 3

Finalmente, os resultados dos ensaios feitos para avaliar a função defloculante do licor cáustico, estão reunidos na tabela 4.10 e na figura 4.9. Esta comparação foi feita somente com o solo do Ensaio  $C_2$  (E2-CN3). Dado que a composição granulométrica dos outros solos é similar, é de se esperar resultados análogos.

| Defloculante                 |        | Are   | eia  | Finos |       |        |       |
|------------------------------|--------|-------|------|-------|-------|--------|-------|
| Benedalante                  | Grossa | Media | Fina | Total | Silte | Argila | Total |
| Água                         | 5      | 26    | 43   | 74    | 15    | 12     | 27    |
| Hexametafosfato              | 5      | 26    | 45   | 76    | 7     | 18     | 25    |
| Licor C <sub>1</sub> (20g/l) | 5      | 25    | 42   | 72    | 10    | 18     | 28    |
| Licor C <sub>2</sub> (70g/l) | 5      | 25    | 41   | 71    | 19    | 10     | 29    |
| Licor C <sub>3</sub> (10g/l) | 5      | 26    | 46   | 77    | 8     | 14     | 22    |
| Licor Puro                   | 5      | 26    | 39   | 70    | 18    | 13     | 31    |

Tabela 4.10 - Resumo Sedimentação com diferentes líquidos defloculantes.

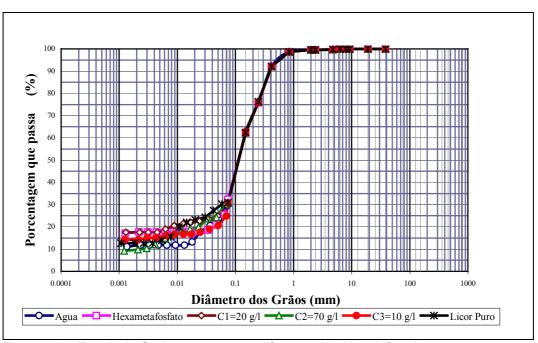



Figura 4.9 – Ensaio de Sedimentação com diferentes líquidos defloculantes.

### • Densidade dos Grãos (Gs)

São apresentados na tabela 4.11, os resultados de Gs para os diferentes materiais sem contaminar. O método utilizado para esta determinação foi o método do picnômetro, as determinações foram feitas com água.

Tabela 4.11 – Valores de Gs para os solos naturais.

| Solo     | Gs    |
|----------|-------|
| E1 – CS3 | 2,670 |
| E2 – CN3 | 2,666 |
| E3 – CN2 | 2,655 |

No caso dos materiais contaminados, esta determinação foi feita só no caso do Ensaio C<sub>1</sub>, como pode observar-se na tabela 4.12. Já que o parâmetro não mostrou muita variação, não se considerou necessário repetir a análise para os outros materiais contaminados.

Tabela 4.12 – Valores de Gs para os solos do Ensaio C<sub>1</sub>

| Gradiente Hidráulico <sup>(*)</sup> | Gs    |
|-------------------------------------|-------|
| i = 1,8                             | 2,673 |
| I = 1,5                             | 2,669 |
| I = 1,0                             | 2,670 |

<sup>(\*)</sup>gradiente hidráulico usado no ensaio edométrico.

#### • Limites de Consistência

Não foi possível determinar os limites de consistência com a material passante na peneira # 40, em nenhum dos materiais analisados.

# 4.3.2. Caracterização físico-química

### • Determinação de pH e Condutividade Elétrica

A determinação do pH e da condutividade elétrica foi feita concomitantemente, no caso do pH numa solução 1 : 1 (solo : água) e no caso da condutividade elétrica, no filtrado por vácuo dessa suspensão. O equipamento utilizado foi o mesmo que no caso do licor, e os procedimentos utilizados para estas determinações estão descritos no Anexo 1.

Nas tabelas 4.13, 4.14, 4.15 e 4.16, são apresentados os resultados para os materiais naturais, ou seja, sem contaminar, e para os materiais contaminados, provenientes dos ensaios edométricos.

Tabela 4.13 – Valores de pH e Condutividade Elétrica para os solos naturais.

| Material | Hq   | Condutividade Elétrica |
|----------|------|------------------------|
| Material | рп   | (μs/cm)                |
| E1 – CS3 | 4,40 | 333                    |
| E2 – CN3 | 4,35 | 91                     |
| E3 – CN2 | 5,23 | 138                    |

Tabela 4.14 – Valores de pH e Condutividade Elétrica – Ensaio C<sub>1</sub>

| Gradiente Hidráulico <sup>(*)</sup> | рН   | Condutividade Elétrica |
|-------------------------------------|------|------------------------|
| Gradiente Hidraulico                |      | (ms/cm)                |
| i = 1,8                             | 9,15 | 0,197                  |
| i = 1,5                             | 9,05 | 0,395                  |
| i = 1,0                             | 9,92 | 2,80                   |
| i = 0,5                             | 9,83 | 4,08                   |

(\*)gradiente hidráulico usado no Ensaio Edométrico.

Tabela 4.15 – Valores de pH e Condutividade Elétrica – Ensaio C<sub>2</sub>

| Gradiente Hidráulico <sup>(*)</sup> | рН    | Condutividade Elétrica<br>(ms/cm) |
|-------------------------------------|-------|-----------------------------------|
| i = 4,0                             | 10,41 | 4,93                              |
| i = 2,0                             | 10,59 | 4,39                              |
| i = 1,0                             | 10,73 | 3,95                              |
| i = 0,5                             | 10,33 | 3,93                              |

(\*)gradiente hidráulico usado no Ensaio Edométrico.

Tabela 4.16 – Valores de pH e Condutividade Elétrica – Ensaio C<sub>3</sub>

| Gradiente Hidráulico <sup>(*)</sup> | pН   | Condutividade Elétrica |
|-------------------------------------|------|------------------------|
|                                     | r    | (ms/cm)                |
| i = 4,0                             | 9,84 | 2,47                   |
| i = 2,0                             | 9,94 | 2,75                   |
| i = 1,0                             | 9,97 | 2,45                   |
| i = 0,5                             | 9,96 | 2,82                   |

(\*)gradiente hidráulico usado no Ensaio Edométrico.

Das tabelas, pode-se observar que o solo natural é ácido; a passagem do licor faz com que o pH aumente, deixando-o alcalino. A condutividade elétrica também cresce após a percolação do licor. Mesmo assim, os valores apresentados são baixos, comportando-se o solo como um material pouco condutor.

### • Capacidade de Troca Catiônica

Segundo Yong (2001), o intercâmbio de cátions em solos acontece quando íons carregados positivamente (íons de contaminantes ou de sais) da água dos poros são atraídos para a superfície das frações argila do solo. A ocorrência deste processo se deve à necessidade de satisfazer a eletroneutralidade e a estequiometria. Os quesitos de eletroneutralidade requerem que os íons trocáveis devem satisfazer a deficiência de carga negativa não equilibrada que apresentam naturalmente as superfícies dos materiais argilosos. Estes íons trocáveis são denominados "cátions inter-cambiáveis ou cátions trocáveis". A capacidade de troca catiônica (CTC) indica a quantidade de cátions trocáveis que um solo possui, e é expressa em número de miliequivalentes de cátions por 100 gramas de solo (meq/100g solo).

Os cátions trocáveis predominantes nos solos são o cálcio e o magnésio. Em seguida, em menor quantidade, são achados o potássio e o sódio. Nos solos ácidos, os que predominam são o alumínio e o hidrogênio.

A capacidade de troca catiônica e a superfície específica são parâmetros importantes na descrição dos minerais argilosos. Valores típicos destes parâmetros disponíveis na literatura são apresentados nas tabelas 4.17 e 4.18.

Tabela 4.17 - Valores de CTC e Superfície Específica para alguns minerais (Adaptado de Mitchell 76)

| Mineral                   | Superfície Específica | CTC        |
|---------------------------|-----------------------|------------|
| iviii lei ai              | (m²/g)                | (meq/100g) |
| Caulinita                 | 10 – 20               | 3 – 15     |
| Esmectita (sup. primária) | 50 – 120              | 80 – 150   |
| Esmectita (sup. sdária.)  | ~840                  | -          |
| Ilita                     | 65 – 100              | 10 – 40    |
| Clorita                   | 0 - 30                | 0          |
| Quartzo                   | <1                    | 0          |
| Calcita                   | <1                    | 0          |

Existem vários métodos para determinar a capacidade de troca catiônica dos solos, sendo o mais difundido o Método do Acetato de Amônio. Neste trabalho, utilizou-se o Método Compulsivo com BaCl<sub>2</sub>. A escolha deste método fundamenta-se em que o acetato de amônio (NH<sub>40</sub>Ac), em solos com conteúdo significativo de carbonatos, pode causar dissolução do CaCO<sub>3</sub>, resultando em uma extração excessiva de Ca<sup>2+</sup> pelo NH<sup>4+</sup>. Como esta técnica permite medir a quantidade de Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup> e Mg<sup>2+</sup> no sobrenadante, este excesso de Ca<sup>2+</sup> pode conduzir a valores maiores de CTC (Yong, 2001). Por outro lado, o solo em questão é um solo ácido, com conteúdo de Al<sup>3+</sup> significativo, conteúdo este que

não é levado em conta pelo método do acetato de amônio para calcular o valor da CTC, podendo assim conduzir a uma avaliação errônea da CTC do solo. O procedimento de ensaio para determinar a CTC pelo método compulsivo é descrito no Anexo 1.

Tabela 4.18 – Valores de CTC e Superfície Específica para alguns minerais argilosos (Adaptado de Yong, 2001).

| Minoral         | Superfície Específica | CTC        |
|-----------------|-----------------------|------------|
| Mineral         | (m²/g)                | (meq/100g) |
| Caulinita       | 10 – 15               | 5 – 15     |
| Ilita           | 80 – 120              | 20 – 40    |
| Clorita         | 70 – 90               | 20 – 40    |
| Montmorilionita | 800                   | 80 – 100   |
| Vermiculita     | 700                   | 100 - 150  |

Independentemente das medições com o método compulsivo, também foi calculada a capacidade de troca catiônica pelo método de azul de metileno. Nas tabelas a seguir, ambos os valores são apresentados.

Tabela 4.19 – Valores de CTC para os solos naturais

| Material   | BaCl <sub>2</sub> | Azul de Metileno |
|------------|-------------------|------------------|
| iviateriai | (meq/100g)        | (meq/100g)       |
| E1 – CS3   | 4,60              | 9,00             |
| E2 – CN3   | 3,25              | 9,00             |
| E3 – CN2   | 3,85              | 6,00             |

Tabela 4.20 – Valores de CTC para os solos do Ensaio C<sub>1</sub>

| Gradiente Hidráulico (*) | $BaCl_2$   | Azul de Metileno |
|--------------------------|------------|------------------|
| Gradiente Hidraulico     | (meq/100g) | (meq/100g)       |
| i = 1,8                  | 4,15       | 8,00             |
| i = 1,5                  | 4,16       | 9,00             |
| i = 1,0                  | 3,89       | 9,00             |
| i = 0,5                  | 4,26       | 9,00             |

<sup>(\*)</sup> gradiente hidráulico utilizado nos ensaios edométricos.

| Gradiente Hidráulico (*) | BaCl <sub>2</sub> | Azul de Metileno |
|--------------------------|-------------------|------------------|
| Gradiente i lidradiico   | (meq/100g)        | (meq/100g)       |
| i = 4,0                  | 4,41              | 8,00             |
| i = 2,0                  | 4,37              | 9,00             |
| i = 1,0                  | 4,24              | 5,00             |
| i = 0,5                  | 4,86              | 9,00             |

Tabela 4.21 – Valores de CTC para os solos do Ensaio C<sub>2</sub>

Tabela 4.22 – Valores de CTC para os solos do Ensaio C<sub>3</sub>

| Gradiente Hidráulico (*) | BaCl <sub>2</sub> | Azul de Metileno |
|--------------------------|-------------------|------------------|
| Gradiente Hidradiico     | (meq/100g)        | (meq/100g)       |
| i = 4,0                  | 4,01              | 6,00             |
| i = 2,0                  | 4,14              | 8,00             |
| i = 1,0                  | 4,06              | 6,00             |
| i = 0,5                  | 3,69              | 6,00             |

<sup>(\*)</sup> gradiente hidráulico utilizado nos ensaios edométricos.

Os valores de CTC achados pelo AM são elevados para o tipo de material estudado (material caulinítico). Os resultados do método compulsivo parecem mais adequados para o material analisado.

### • Superfície Específica

A superfície específica de um solo é uma medida que combina os efeitos do tamanho das partículas e sua esbelteza. A superfície específica é igual ao quociente entre a área superficial da partícula e sua massa.

Segundo Santamarina et al. (2002), a relevância da superfície especifica (Se) no comportamento do solo pode ser inferida comparando-se a magnitude das forças elétricas inter-partículas, F<sub>elec</sub>, com o peso W da partícula.

$$\frac{Felec}{W} = Se \frac{(Rddl - Att)}{g}$$
 Eq. 4-1

onde g é a aceleração em m/s², e Rddl e Att são, respectivamente, as forças atuantes entre duas partículas (em N/m²). No caso de solos não saturados, a relação entre o peso da partícula e a força capilar inter-partículas é relevante

<sup>(\*)</sup> gradiente hidráulico utilizado nos ensaios edométricos.

$$\frac{Fcap}{W} = Se^2 \left(\frac{\xi}{w \times g}\right)$$
 Eq. 4-2

onde  $\xi$  é uma constante de proporcionalidade e w é o conteúdo de umidade gravimétrico. Estas equações mostram que quando Se cresce, a importância das forças elétricas e capilares, também cresce.

Em geral, à medida que o tamanho das partículas diminui, a superfície especifica cresce. A tabela 4.23 resume valores de superfície específica e de outras características para alguns argilo-minerais.

Tabela 4.23 - Propriedades de alguns argilo-minerais (Adaptado de Santamarina 2002).

| Propriedade | Montmorilionita | Ilita     | Caulinita |
|-------------|-----------------|-----------|-----------|
| Se (m²/g)   | 400 – 800       | 80 – 100  | 10 – 20   |
| LL (%)      | 100 – 950       | 60 – 120  | 30 –110   |
| LP (%)      | 50 – 100        | 35 – 60   | 25 – 40   |
| Atividade   | 0.9 - 7         | 0,5 - 1,0 | 0,3 - 0,5 |

Existem vários métodos para determinar a superfície específica de um solo, desde a determinação direta pela medida visual, usando microscópio eletrônico, ou por procedimentos indiretos, através da medição da quantidade de material absorvido pela superfície do solo. A descrição do método direto, assim como as técnicas de cálculo da superfície específica, podem ser encontradas em Sposito (1994). Com relação, à técnica indireta, os materiais de impregnação podem ser de dois tipos: gasosos ou líquidos. Dentre os líquidos, duas técnicas estão bastante difundidas: o Método do Éter Monoetílico de Etileno Glicol (EMEG), e o Método do Azul de Metileno (AM).

Maiores detalhes sobre os métodos para determinar superfície específica podem ser encontrados em Perez e Casanova (1994), Santamarina et al. (2002), Higgs (1988) e Cerato e Lutenegger (2002).

Nesta dissertação optou-se pelo Método do Azul de Metileno, que, segundo Casanova (1986), é um método rápido, simples e de boa reprodutibilidade, além de permitir a medição concomitante da capacidade de

troca catiônica (CTC). Os valores achados são apresentados nas tabelas 4.24, 4.25 e 4.26.

Tabela 4.24 – Valores de Superfície Específica para os solos naturais

| Motorial | Superfície Específica |
|----------|-----------------------|
| Material | (m²/g)                |
| E1 – CS3 | 70,24                 |
| E2 – CN3 | 70,24                 |
| E3 – CN2 | 46,83                 |

Tabela 4.25 – Valores de Superfície Específica para os solos do Ensaio C<sub>1</sub>

| Gradiente Hidráulico <sup>(*)</sup> | Superfície Específica<br>(m²/g) |
|-------------------------------------|---------------------------------|
| i = 1,8                             | 62,43                           |
| i = 1,5                             | 70,24                           |
| i = 1,0                             | 70,24                           |
| i = 0,5                             | 70,24                           |

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico.

Tabela 4.26 – Valores de Superfície Especifica para os solos do Ensaio C2

| Gradiente Hidráulico <sup>(*)</sup> | Superfície Específica |
|-------------------------------------|-----------------------|
| Gradiente maradico                  | (m <sup>2</sup> /g)   |
| i = 4,0                             | 62,43                 |
| i = 2,0                             | 70,24                 |
| i = 1,0                             | 39,02                 |
| i = 0,5                             | 70,24                 |

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico.

Tabela 4.27 – Valores de Superfície Específica para os solos do Ensaio C<sub>3</sub>

| Gradiente Hidráulico <sup>(*)</sup> | Superfície Específica |
|-------------------------------------|-----------------------|
|                                     | (m²/g)                |
| i = 4,0                             | 46,83                 |
| i = 2,0                             | 62,43                 |
| i = 1,0                             | 46,83                 |
| i = 0,5                             | 46,83                 |

(\*) gradiente hidráulico utilizado no ensaio edométrico.

Similarmente ao que acontece com os valores de CTC, os valores de superfície especifica pelo método de azul de metileno resultam elevados para a natureza do material analisado.

### • Densidade de Carga Superficial ( $\sigma_s$ )

A partir dos valores de capacidade de troca catiônica e de superfície específica, é possível calcular a densidade de carga superficial, usando a seguinte equação (Yong, 2001),

$$CTC = 10^{5} \times \sigma_{s} \times Se$$
ou
$$\sigma_{s} = \frac{CTC}{(10^{5} \times Se)}$$

em keg/m<sup>2</sup>.

onde CTC e Se estão expressas em meq/100 g e m $^2$ /kg e, então, a  $\sigma_s$  fica

A densidade de carga superficial é igual à soma de todas as cargas atuantes na superfície da partícula.

Para os materiais analisados, os resultados foram os seguintes:

Tabela 4.28 – Valores de Densidade de carga para os solos naturais

| Material   | σ <sub>s</sub> <sup>(1)</sup> | $\sigma_{s}^{^{(2)}}$   |
|------------|-------------------------------|-------------------------|
| iviaterial | (meq/m <sup>2</sup> )         | (meq/m <sup>2</sup> )   |
| E1 – CS3   | 1,28 x 10 <sup>-6</sup>       | 6,55 x 10 <sup>-7</sup> |
| E2 – CN3   | 1,28 x 10 <sup>-6</sup>       | 4,69 x 10 <sup>-7</sup> |
| E3 – CN2   | 1,28 x 10 <sup>-6</sup>       | 8,22 x 10 <sup>-7</sup> |

<sup>(1)</sup> com valores de CTC e Se calculados com o Método do AM, (2) com CTC calculado pelo método compulsivo e Se pelo AM.

Tabela 4.29 – Valores de Densidade de carga para os solos do Ensaio C<sub>1</sub>

| Gradiente Hidráulico <sup>(*)</sup> | $\sigma_{\rm s}^{(1)}$  | $\sigma_{\rm s}^{(2)}$  |
|-------------------------------------|-------------------------|-------------------------|
| Gradiente midradiico                | (meq/m <sup>2</sup> )   | (meq/m <sup>2</sup> )   |
| i = 1,8                             | 1,28 x 10 <sup>-6</sup> | 6,65 x 10 <sup>-7</sup> |
| i = 1,5                             | 1,28 x 10 <sup>-6</sup> | 5,92 x 10 <sup>-7</sup> |
| i = 1,0                             | 1,28 x 10 <sup>-6</sup> | 5,54 x 10 <sup>-7</sup> |
| i = 0,5                             | 1,28 x 10 <sup>-6</sup> | 6,07 x 10 <sup>-7</sup> |

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico. (1) com valores de CTC e Se calculados com o Método do AM, (2) com CTC calculado pelo método compulsivo e Se pelo AM.

| Gradiente Hidráulico <sup>(*)</sup> | $\sigma_{\rm s}^{(1)}$  | $\sigma_{\mathrm{s}}^{(2)}$ |
|-------------------------------------|-------------------------|-----------------------------|
| Gradiente Filaradileo               | (meq/m <sup>2</sup> )   | (meq/m <sup>2</sup> )       |
| i = 4,0                             | 1,28 x 10 <sup>-6</sup> | 7,06 x 10 <sup>-7</sup>     |
| i = 2,0                             | 1,28 x 10 <sup>-6</sup> | 6,22 x 10 <sup>-7</sup>     |
| i = 1,0                             | 1,28 x 10 <sup>-6</sup> | 1,09 x 10 <sup>-7</sup>     |
| i = 0.5                             | 1 28 x 10 <sup>-6</sup> | 6 92 x 10 <sup>-7</sup>     |

Tabela 4.30 – Valores de Densidade de carga para os solos do Ensaio C<sub>2</sub>

Tabela 4.31 – Valores de Densidade de carga para os solos do Ensaio C<sub>3</sub>

| Gradiente Hidráulico <sup>(*)</sup> | $\sigma_{\rm s}^{(1)}$  | $\sigma_{s}^{(2)}$      |
|-------------------------------------|-------------------------|-------------------------|
| Oraciente i nuraciico               | (meq/m²)                | (meq/m <sup>2</sup> )   |
| i = 4,0                             | 1,28 x 10 <sup>-6</sup> | 8,56 x 10 <sup>-7</sup> |
| i = 2,0                             | 1,28 x 10 <sup>-6</sup> | 6,63 x 10 <sup>-7</sup> |
| i = 1,0                             | 1,28 x 10 <sup>-6</sup> | 8,67 x 10 <sup>-7</sup> |
| i = 0,5                             | 1,28 x 10 <sup>-6</sup> | 7,88 x 10 <sup>-7</sup> |

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico. (1) com valores de CTC e Se calculados com o Método do AM, (2) com CTC calculado pelo método compulsivo e Se pelo AM.

#### • Conteúdo de Ferro e Alumínio

Com o intuito de observar a possibilidade de lavagem de elementos tais como alumínio e ferro devido à passagem de licores cáusticos, foram determinados os conteúdos destes minerais nos solos naturais e após a contaminação. Isto foi feito por meio da digestão ácida das amostras de acordo com o procedimento EPA-3050 B – "Acid Digestion of Sediments, Sludges and Soils".

Os resultados obtidos são apresentados a seguir:

Tabela 4.32 – Conteúdo de Ferro e Alumínio para os solos naturais

| Material   | Alumínio | Ferro |
|------------|----------|-------|
| iviaterial | (ppm)    | (ppm) |
| E1 – CS3   | 243,33   | 6,141 |
| E2 – CN3   | 169,31   | 5,272 |
| E3 – CN2   | 121,90   | 3,500 |

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico. (1) com valores de CTC e Se calculados com o Método do AM, (2) com CTC calculado pelo método compulsivo e Se pelo AM.

| Gradiente Hidráulico <sup>(*)</sup> | Alumínio | Ferro  |
|-------------------------------------|----------|--------|
| Gradiente Fildradiico               | (ppm)    | (ppm)  |
| i = 1,8                             | 265,90   | 9,013  |
| i = 1,5                             | 287,60   | 8,019  |
| i = 1,0                             | 331,24   | -      |
| i = 0,5                             | 240,20   | 10,573 |

Tabela 4.33 – Conteúdo de Ferro e Alumínio para os solos do Ensaio C<sub>1</sub>

Tabela 4.34 – Conteúdo de Ferro e Alumínio para os solos do Ensaio C2

| Gradiente Hidráulico <sup>(*)</sup> | Alumínio | Ferro  |
|-------------------------------------|----------|--------|
| Gradiente muraulico                 | (ppm)    | (ppm)  |
| i = 4,0                             | 242,80   | 8,954  |
| i = 2,0                             | 269,60   | 33,457 |
| i = 1,0                             | 253,52   | 10,028 |
| i = 0,5                             | 283,49   | 9,439  |

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico.

Tabela 4.35 – Conteúdo de Ferro e Alumínio para os solos do Ensaio C<sub>3</sub>

| Gradiente Hidráulico <sup>(*)</sup> | Alumínio | Ferro |
|-------------------------------------|----------|-------|
| Gradiente Hidraulico                | (ppm)    | (ppm) |
| i = 4,0                             | 199,50   | 5,700 |
| i = 2,0                             | 221,10   | 7,100 |
| i = 1,0                             | 214,70   | 7,300 |
| i = 0,5                             | 188,20   | 6,500 |

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico.

## • Ataque sulfúrico

O ensaio de ataque sulfúrico serve para determinar os teores de sílica, óxido de alumínio e ferro. Com estes valores, é possível obter as relações moleculares ki e kr. Os índices ki e kr são calculados pelas seguintes fórmulas:

$$k_i = \frac{\% SiO_2/60}{\% Al_2O_3/102}$$
 Eq. 4-3

<sup>(\*)</sup> gradiente hidráulico utilizado no ensaio edométrico.

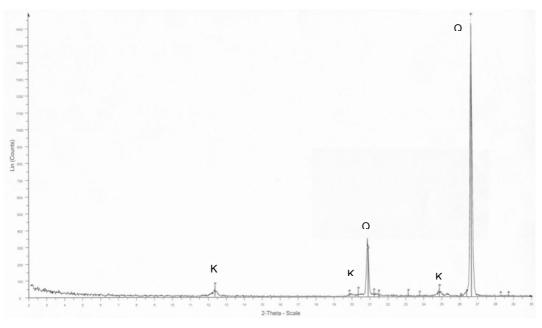
$$k_r = \frac{\% SiO_2/60}{\% Al_2O_3/102 + \% Fe_2O_3/160}$$
 Eq. 4-4

Os ensaios foram feitos com o solo natural E1-CS3, e deram os seguintes resultados:

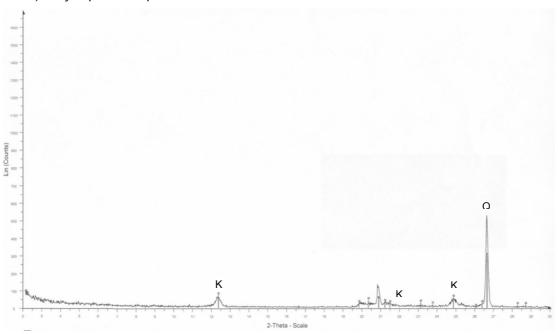
 Material
 SiO<sub>2</sub> (%)
 AIO<sub>3</sub> (%)
 Fe<sub>2</sub>O<sub>3</sub> (%)
 k<sub>i</sub> k<sub>r</sub>

 E1 – CS3
 4,2
 5,5
 2,4
 1,30
 1,02

Tabela 4.36 - Ensaio de Ataque Sulfúrico


# 4.3.3. Caracterização mineralógica

A caracterização mineralógica das amostras foi feita através dos seguintes ensaios.


- difração por Raios-X,
- observação na lupa,

Para observar possíveis alterações na composição mineralógica dos solos pela percolação dos licores cáusticos, foram feitas estas análises com material natural, proveniente dos blocos indeformados (E2-CN3), e com material contaminado, amostras provenientes do ensaio edométrico C<sub>2</sub>.

Análises mineralógicas das frações passantes nas peneiras #200 e #400 foram realizadas por meio de difração por raios X, no Departamento de Ciência dos Materiais e Metalurgia (DCMM) da PUC-Rio, com as amostras sendo preparadas no Laboratório de Geotecnia e Meio Ambiente da PUC-Rio. O equipamento utilizado foi o Difratômetro Siemens D5000, equipado com anodo de cobre (Cu), irradiação realizada no intervalo de 2 a 30°2θ. A velocidade de varredura da amostra no difratômetro foi de 0,02°2θ e tempo de leitura em cada passo de 1 segundo. A figura 4.10 mostra os resultados obtidos para o solo sem contaminar.



a) Fração passante peneira #200



b) Fração passante peneira #400

Figura 4.10 – Difratograma dos solos do E2 – CN3 – Solo Natural

Com base nos dados mineralógicos e na relação molecular sílica/alumínio, verifica-se que o solo natural tem um comportamento laterítico.

Além dos ensaios citados, e procurando obter maiores informações sobre as mudanças que pode ter provocado a percolação do licor cáustico, foram feitas observações na lupa do Laboratório de Geotecnia e Meio Ambiente da PUC-Rio. Analizaram-se materiais provenientes dos ensaios de sedimentação e amostras

não amolgadas do material natural, proveniente dos blocos indeformados e das amostras dos ensaios edométricos.

Como pode observar-se na figura 4.11, o material natural apresenta uma quantidade significativa de grãos de quartzo, de forma arredondada, cimentados fracamente por um material fino vermelho. Também se observa a presença de acumulações de manganês (material preto). A figura 4.12 mostra uma acumulação de quartzo rodeada por um círculo de manganês. O que resulta interessante nesta figura é que os grãos de quartzo encontram-se isolados e com pouca presença de material fino.

Das amostras de sedimentação, analisou-se o material retido na peneira # 200. Percebe-se claramente a forma arredondada dos grãos de quartzo. No material natural, os grãos apresentam-se limpos e individuais (Figura 4.13).

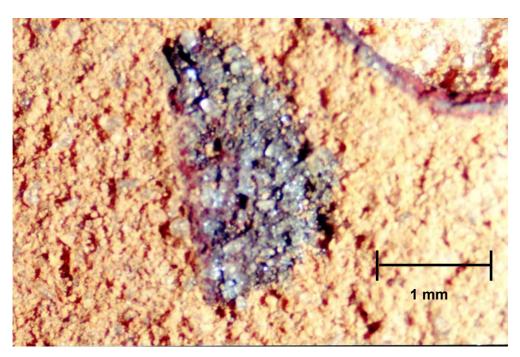



Figura 4.11 - Amostra Indeformada E2-CN3

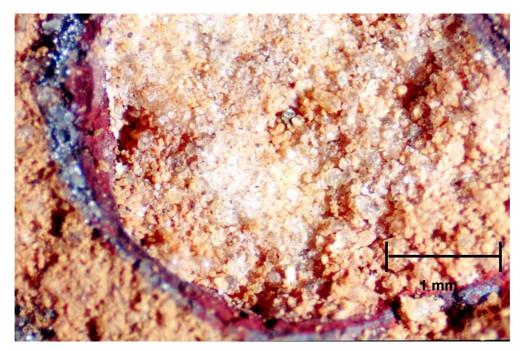



Figura 4.12 – Amostra Indeformada E2-CN3

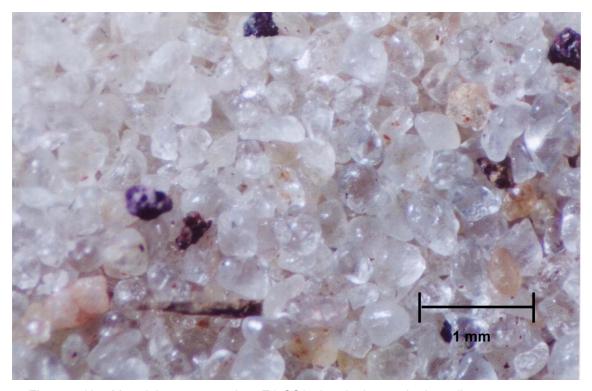



Figura 4.13 – Material sem contaminar E1-CS3, depois do ensaio de sedimentação.

Observando os materiais dos ensaios de sedimentação referentes aos ensaios edométricos  $C_2$  e  $C_3$  retidos na peneira #200, não se observaram diferencias entre os materiais naturais.